If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-7u-15=0
a = 4; b = -7; c = -15;
Δ = b2-4ac
Δ = -72-4·4·(-15)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-17}{2*4}=\frac{-10}{8} =-1+1/4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+17}{2*4}=\frac{24}{8} =3 $
| 70x=1500 | | 1/4x+3=27 | | 0.15*x=1.66 | | 15(y-4)-2(y-9)+5(y+0)=0 | | x-4=2x+15 | | 6.48x+64.8+50=289 | | -(8-8k)/4=0 | | 14x+2=10x-2 | | -8x=7=-6x=5 | | -6x-24+8=4x | | 9y2-168y+784=0 | | 6x+5x=152 | | 11-7y=24 | | x+(2x/25)=785.60 | | 2x/3-5=25 | | 29=(5v-7) | | 125+x=1000000000000000 | | 2x-5/4+1=9 | | 8=-8w+4(w+6) | | 3000000=3x^2 | | 4+x^2=9 | | 12x=677 | | (a-1)^2=16 | | 40x^2=810 | | x-7+4x=3x+9x-28 | | 2x=9x+56 | | 25-7x=13-5x | | 5x+12+28=90 | | 2(1-f)=+5 | | 3x=3.1415926535 | | 7^(3x)=623 | | 4(e+8)=68 |